Report

Realization of a virtual Private Branch Exchange(PBX) on A MAX II kit using VHDL coding.

By Ujjval Shah(05BEC080) Priya Vaya(05BEC090)

A **Private Branch eXchange** (PBX) is a telephone exchange that serves a particular business or office, as opposed to one that a common carrier or telephone company operates for many businesses or for the general public. PBXs make connections among the internal telephones of a private organization, usually a business, and also connect them to the public switched telephone network (PSTN) via trunk lines.

The entire process occurring at the PBX can be divided into multiple modules. The realization has been carried for a total of 5 users.

Module 1: USERS' HOOK SCANNING

The pbx constantly scans the user's lines for detecting an off hook condition (i.e. the receiver has been lifted). If the ith user is off hook, the flag pertaining to that user (Busy flag) is set, indicating its off hook status. This is followed by the reception of a dial tone by that user. Also an flag indicating its 'engaged' status is set, so that any other user can't get access to that particular user. The flag indicating ringing tone is reset for obvious reasons. When its in the on hook condition, the user busy flag, Engaged tone flag, dial tone flag are all reset. Once the user receives the dial tone, he can dial a number in the keypad. Hence the digit dialing enable flag is set.

Module 2: LEDS

Post the above process, if the dial tone flag for that user is set, then the LED pertaining to that user indicates it is receiving the dial pulse. Subsequently, the engaged status and the ringing tone status is reflected by the LEDS.

Module 3: Dialing the number(Keypad Scanning)

Particular numbers have been assigned to the various users. The 1st user's number is 00001,the 2nd user's number is 00010 and so on. If the digit dialing is enabled, the number is dialed through the keypad. Suppose, the number 00001 is dialed by a particular user, then the scanner will check for its busy flag's status. If it is in reset state, then the ith user and the ath user receive a ringing tone, setting the dial tone offhand the connection is made ,after which the digit dialing flag is set off. The same process is repeated if the 2nd,3rd etc user's number is dialed.

However, if the ith user is trying to reach the ath user which has its busy flag set, then the engaged tone is received by that user. Only after on hooking the receiver can the user dial a new number. Hence the digit enable flag is reset momentarily and then set once it enters the loop defined by the module 1.

For this purpose, we require four signals viz. ringing tone, dial tone, clock and the engaged tone. The clock is provided internally from the MAX II hardware. The rest of them are supplied by microcontroller ATMEGA16. The VHDL coding is as follows.

```
-- on an MAX II: EPM240T100C5 kit using VHDL coding --
    -- 05 BEC 080 --
4
    -- 05 BEC 093 --
5
    library ieee;
6
    use ieee.std_logic_1164.all;
8
    entity pbx2 is
    port(clk, ring, engaged, dialpulse :in bit;
9
10
         us, digit : in bit_vector(4 downto 0);
         usl : out bit_vector(4 downto 0):="00000");
11
12
   end pbx2;
13
14
     -- us -> user
15
     -- usl -> user led
     \operatorname{\mathsf{--}} digit \operatorname{\mathsf{--}} Digit entered from the keypad
16
17
     -- ring, engaged, dialpulse -> respective signals on the leds
18
    architecture sw of pbx2 is
19
2.0
      signal B, usld, usle, uslr: bit_vector(4 downto 0):="00000";
      signal toggle : bit_vector(4 downto 0):="11111";
21
22
      signal digiten : bit;
23
2.4
      -- usld -> Dial Tone Flag for that user
      -- uslr -> Ringing Tone Flag for that user -- usle -> Engaged Tone Flag for that user
25
26
27
      -- B -> Busy Flag for that user
28
      -- digiten -> Keypad enable Flag
      -- toggle -> Toggle Flag to detect the change in the on/off hook
29
condition
30
31
      begin
32
        process (clk)
33
          variable a : integer:=0;
34
          variable call : bit_vector(4 downto 0):="00000";
35
      begin
36
      if clk'event and clk='1'then
37
      -----
      -- Users' Hook Scanning --
38
39
      -----
40
      Scanning: for i in 0 to 4 loop
41
      if us(i)='0' then -- on hook condition
42
         if toggle(i)='1' then
43
               usl(i) <= '0';
44
45
               usld(i)<='0';
               usle(i) <= '0';
46
               uslr(i)<='0';
47
               call(i):='0';
48
49
               B(i)<='0';
50
         end if;
51
      toggle(i)<='0';
52
53
      elsif us(i)='1' then
      usl(i) \le '1'; -- off hook condition if toggle(i)='0' then
54
55
            usle(i)<='0';
56
            uslr(i)<='0';
57
            uslr(a) <= '0';
58
59
      if call(i)='1' then -- receiving a call
            usl(i)<='1';
60
            usl(a) <= '1';
61
62
           B(i)<='1';
63
     elsif call(i)='0' then -- making a call
64
            B(i) \le '1';
```

```
65
          a:=i;
66
          digiten<='1';
67
          usld(i) <= '1';
68
    end if;
          toggle(i)<='1';
69
70
    end if;
71
    end if;
72
73 end loop Scanning;
75 -- Users' Hook Scanning Ends --
76 --=========
77 LEDS: for j in 0 to 4 loop
78
79
    if usld(j)='1' then
80
         usl(j) <= dialpulse;
81
    end if;
82
83
    if uslr(j)='1' then
84
         usl(j)<=ring;
85
    end if;
86
87
    if usle(j)='1' then
88
        usl(j)<=engaged;
    end if;
89
90
91 end loop LEDS;
92 -----
93 -- Keypad Scanning --
94 --==========
95 if digiten='1' then
96 case digit is
       when "00001" => --#1
97
           if B(0)='0' then
98
99
               uslr(0) <= '1';
100
               uslr(a) <= '1';
               usld(a)<='0';
101
               call(0):='1';
102
103
               digiten<='0';
           elsif B(0) = '1' then
104
105
               usle(a) <= '1';
106
               digiten<='0';
           end if;
107
       when "00010" \Rightarrow --#2
108
109
        if B(1) = '0' then
           uslr(1) <= '1';
110
111
           uslr(a) <= '1';
112
           usld(a) <= '0';
           call(1):='1';
113
           digiten<='0';
114
       elsif B(1) = '1' then
115
           usle(a) <= '1';
116
           digiten<='0';
117
        end if;
118
      when "00100" \Rightarrow --#3
119
         if B(2) = '0' then
120
121
           uslr(2)<='1';
122
           uslr(a) <= '1';
123
           usld(a) <= '0';
           call(2):='1';
124
           digiten<='0';
125
        elsif B(2)='1' then
126
127
           usle(a) <= '1';
           digiten<='0';
128
```

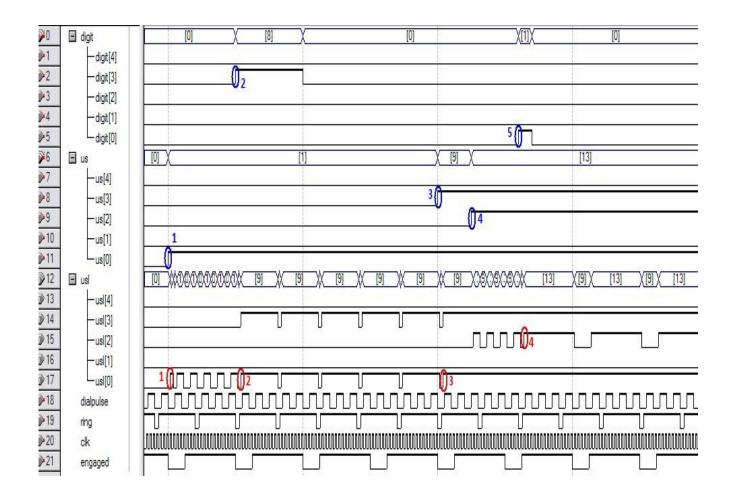
```
129
        end if;
    when "01000" => --#4
130
131
     if B(3) = '0' then
        uslr(3)<='1';
132
133
          uslr(a)<='1';
          usld(a)<='0';
134
          call(3):='1';
135
          digiten<='0';
136
       elsif B(3)='1' then
137
          usle(a)<='1';
138
139
           digiten<='0';
140
      end if;
    when "10000" \Rightarrow --#5
141
      if B(4) = '0' then
142
          uslr(4)<='1';
uslr(a)<='1';
143
144
          usld(a) <= '0';
145
           call(4):='1';
146
          digiten<='0';
147
     elsif B(4)='1' then
148
          usle(a)<='1';
149
          digiten<='0';
150
     end if;
151
152
    when others =>
153
         null;
154 end case;
155 end if;
156 -----
157 -- Keypad Scanning Ends --
158 -----
159 end if;
160 end process;
161 end sw;
```

Simulatio results:

```
1 (blue) - user 0 picks up

1 (r) - gets the dial pulse

2 (b) - dials #3


1 and 3 gets the ringing

3 picks up

both are connected

2 picks up and gets the dial

dials to 0 and gets the engaged tone
```

